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Abstract

This article presents a computational model of the learning of diagnostic knowledge, based

on observations of human operators engaged in a real-world troubleshooting task. We present

a model of problem solving and learning in which the reasoner introspects about its own perfor-

mance on the problem-solving task, identifies what it needs to learn to improve its performance,

formulates learning goals to acquire the required knowledge, and pursues its learning goals

using multiple learning strategies. The model is implemented in a computer system which

provides a case study based on observations of troubleshooting operators and protocol analysis

of the data gathered in the test area of an operational electronics manufacturing plant. The

model not only addresses issues in human learning, but, in addition, is computationally justified

as a uniform, extensible framework for multistrategy learning.



1 Introduction

The focus of our research is on the integration of different kinds of knowledge and reasoning

processes into real-world systems that can learn through experience. In particular, we are interested

in modeling active, goal-driven learning processes that underlie deliberative learning during the

performance of complex reasoning tasks. This article presents a case study of multistrategy learning

for the problem of learning diagnostic knowledge during a troubleshooting task. The case study

is based upon observations of human operators engaged in this task. We present a computational

model of problem solving and learning in which the reasoning system performs a diagnostic

problem-solving task, and then introspects about its own performance on the task, identifies what

it needs to learn to improve its performance, formulates learning goals to acquire the required

knowledge, and pursues its learning goals using multiple learning strategies.

This research was motivated by two considerations. First, although there has been a significant

growth of research on machine learning, much of this research has not been performed in the

context of complex real-world problem-solving tasks (cf. Riddle, 1992). As a result, the issues of

scalability and robustness of these methods, as they are applied to real-world problems, are still

unresolved in many cases. To promote the applicability and usability of research methods, it is

important to ground theories of reasoning, knowledge representation, and learning in the context

of real-world tasks and domains.

Our second motivation was to provide a computational account of human learning in the

context of a real-world problem. The model presented in this article is based on observations of

troubleshooting operators and protocol analysis of the data gathered in the test area of an operational

electronics manufacturing plant. The model is implemented in a computer system, Meta-TS,1 which

uses multiple types of knowledge to troubleshoot printed-circuit boards that fail in the test area

of the manufacturing plant. Meta-TS has been evaluated on a series of troubleshooting problems,

including actual problems encountered by the human operators in the manufacturing plant. The

underlying model is intended as a computational model of human learning; in addition, it is

computationally justified as a uniform, extensible framework for multistrategy learning in machine

learning systems.
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1.1 The problem

One of the critical areas in electronics assembly manufacturing is the test and repair area (Douglas,

1988; Kakani, 1987). It is estimated that about 20% of manufactured printed-circuit boards

(PCBs) fail in the test area in an initial electronics assembly line, particularly in a medium-to-high

variety product line when it takes time to achieve desired levels of process control. When PCBs

spend a considerable amount of time in the test and repair area, it increases the work-in-process

inventory and slows down the feedback to the manufacturing line necessary for achieving better

process control. This results in significant deterioration of system performance. Computerized

decision aids can potentially alleviate some of the major problems in the test and repair area and

facilitate enhanced system performance. A key to developing computer-based aids is understanding

the human problem-solving processes that carry out the complex task of troubleshooting in an

assembly line situation. While there has been much interest in developing artificial intelligence

(AI) applications in various areas of electronics manufacturing (e.g., Miller & Walker, 1988), most

of this research has not dealt with the issues of learning or cognitive modeling.

It is generally accepted that learning is central to intelligent reasoning systems that perform re-

alistic reasoning tasks, such as understanding natural language stories or solving complex problems

(e.g., Anderson, 1987; Feigenbaum, 1963; Schank, 1983). It is impossible to anticipate all possible

situations in advance and to hand-program a machine with exactly the right knowledge to deal with

all the situations that it might be faced with. Rather, during the performance of any non-trivial

reasoning task, whether by human or by machine, there will always be failures. An important

aspect of intelligence lies in the ability to recover from such failures and, more importantly, to learn

from them so as not to make the same mistake in future situations.

In the Meta-TS system, reasoning failures consist of incorrect troubleshooting diagnoses, no

diagnosis (impasses), and successful diagnoses from inefficient problem-solving.2 When such

failures occur, the system must be able to select and apply an appropriate learning strategy in order

to improve the chances of making a correct diagnosis in similar future situations. Thus, one approach

a reasoning system might take is to reflect over the reasoning that went into making the original

diagnosis and then use this introspective analysis to form a basis for selecting a learning strategy.

To model this process theoretically, we have developed a computational model of introspective
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reasoning for decision-making about learning needs and associated learning strategies. This model

is instantiated in the context of the diagnostic problem-solving task in the domain of electronics

assembly manufacturing.

1.2 Multistrategy learning

Learning manifests itself in humans with multiple strategies over a multitude of learning problems.

Over the past few years, research in machine learning and cognitive science has focused on the

development of independent learning algorithms for many classes of these problems. Some of

the algorithms that are tailored to particular learning problems include inductive learning (e.g.,

induction of decision trees (Quinlan, 1986), conceptual clustering (Fisher, 1987; Michalski &

Stepp, 1983)), analytical learning (e.g., explanation-based learning (DeJong & Mooney, 1986;

Mitchell, Keller, & Kedar-Cabelli, 1986), learning from explanation failures (Hall, 1988; VanLehn,

Jones, & Chi, 1992)), and analogical learning (e.g., analogy (Falkenhainer, 1989; Gentner, 1989),

case-based learning (e.g., Carbonell, 1986; Hammond, 1989)). Recently, under the banner of

“multistrategy learning,” there has been much interest in combining or otherwise integrating these

and other learning methods in order to address more complex situations than does independent

“monostrategy learning” (see, e.g., Michalski & Tecuci, 1994). Multistrategy learning systems

use a variety of control methods to integrate and combine several learning strategies into a single

computer model, providing power and flexibility over a wide range of problems.

An alternative approach to flexible learning is exemplified by cognitive architectures such as

Soar (Laird, Rosenbloom, & Newell, 1986). Soar takes a broad approach to learning, using a single

learning mechanism (chunking), rather than multiple learning strategies to account for learning on

different classes of problems. Instead of explicit representations of different problem solving and

learning methods and explicit selection between them, Soar is based on “weak methods” (universal

subgoaling and chunking) from which higher-level strategies emerge. The system has been shown

to model explanation-based generalization, strategy learning, macro-operator learning, learning

from advice, and other kinds of learning (Steier et al., 1987).

Regardless of whether it is possible that a single underlying mechanism might be able to account

for all these methods, however, it is still important to identify and study the methods themselves (and

3



the conditions under which they are useful), particularly when developing computational models

of human learning in which behaviors corresponding to these learning methods are exhibited.

Rather than assume a uniform mechanism from which the strategies emerge, the multistrategy

approach integrates separate learning strategies into a unified whole by providing a system with

some mechanism for combining the strategies (or for choosing from among them). The desired

learning behavior(s) can then be modeled by manipulating the suite of strategies available to the

learner, by adjusting the manner of combination or the decision mechanism that chooses between

strategies, or by changing the kinds of learning goals available for pursuit. One advantage of this

approach is that different learning behaviors can be modeled directly and explicitly.

Our methodological stance is to develop an explicit theory of the different types of reasoning and

learning that the system is to perform. We wish to understand the nature of various learning methods,

the kinds of situations to which the methods apply, the kinds of knowledge that can be learned

with them, and the limitations each method implies. Our approach uses a set of available learning

strategies that are selected through an introspective analysis of the system’s reasoning processes.

Our method, called introspective multistrategy learning, combines metacognitive reasoning with

multistrategy learning to allow the system to determine what it needs to learn and how that learning

should be performed.

1.3 Introspective multistrategy learning

In order to fully integrate multiple learning algorithms into a single multistrategy system, it is

beneficial to develop methods by which the system can make its own decisions concerning which

learning strategies to use in a given circumstance. Often, knowledge about applicability conditions

and utility of learning strategies is implicit in the procedures that implement the strategy; this further

complicates the problem the system faces when automatically choosing a learning algorithm. Our

solution to this problem is to represent knowledge of learning strategies and applicability conditions

for these strategies explicitly in the system itself. An additional methodological benefit of this

approach is that it requires the researcher to formulate such information as an explicit part of the

proposed theory of learning, thus improving the specification of the theory.

In addition to the world model that describes its domain, an introspective multistrategy learning
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system has access to meta-models describing its reasoning and learning processes, the knowledge

that this reasoning is based on, the indices used to organize and retrieve this knowledge, and the

conditions under which different reasoning and learning strategies are useful. A meta-model is

also used to represent the system’s reasoning during a performance task, the decisions it took while

performing the reasoning, and the results of the reasoning. All of this knowledge can then be

used to guide multistrategy learning using introspective analysis to support the strategy selection

process.

The introspective process in our model relies on meta-explanations about reasoning. These

are similar to self-explanations (Chi & VanLehn, 1991; Pirolli & Bielaczyc, 1989; Pirolli &

Recker, in press; VanLehn, Jones, & Chi, 1992), with the difference that self-explanations are

explanations about events and objects in the external world, whereas our meta-explanations are

explanations about events and objects in the reasoning system’s train of thoughts—the mental world.

While experimental results in the metacognition literature suggest that introspective reasoning can

facilitate reasoning and learning (see, e.g., Schneider, 1985; Weinert, 1987; and the further review

of the metacognition literature in section 5.1), it is important to develop computational models that

specify the mechanisms by which this facilitation occurs and the kinds of knowledge that these

mechanisms rely on.

Our approach is motivated by computational and system design considerations as well. The

approach relies on a declarative representation of meta-models for reasoning and learning. There

are several advantages of maintaining such structures in memory. Because these structures repre-

sent reasoning processes explicitly, the system can directly inspect the reasons underlying a given

processing decision it has taken and evaluate the progress towards a goal. Thus, these representa-

tions can also be used to assign blame, to analyze why reasoning errors occurred, and to facilitate

learning from these errors. Furthermore, these knowledge structures provide a principled basis for

integrating multiple reasoning and learning strategies, and the unified framework makes it possible

to incorporate additional types of learning situations and additional learning strategies for these

situations.

The key representational entity in our learning theory is a meta-explanation pattern (Meta-XP),

which is a causal, introspective explanation structure that explains how and why an agent reasons,

and which helps the system in the learning task (Cox & Ram, 1992; Ram & Cox, 1994). There
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are two broad classes of Meta-XPs. Trace Meta-XPs record a declarative trace of the reasoning

performed by a system, along with causal links that explain the decisions taken. The trace holds

explicit information concerning the manner in which knowledge gaps are identified, the reasons why

particular hypotheses are generated, the strategies chosen for verifying candidate hypotheses, and

the basis for choosing particular reasoning methods for each of these. Trace Meta-XPs are similar

to “reasoning traces” (Carbonell, 1986; Minton, 1988; Veloso & Carbonell, 1994) or “justification

structures” (Birnbaum et al., 1990; deKleer et al., 1977; Doyle, 1979), with the difference that

Trace Meta-XPs represent, in addition to the subgoal structure of the problem and justifications

for operator selection decisions, information about the structure of the (possibly multistrategy)

reasoning process that generated a solution. For example, at the highest level of granularity, a node

in a Trace Meta-XP might represent the choice of a reasoning method such as association-based

search or heuristic reasoning, and at a more detailed level a node might represent the process

of selecting and using a particular association or heuristic. These structures could, therefore, be

viewed as representing the “mental operators” underlying the reasoning process.

The major contribution of our approach, however, is the use of a new kind of meta-explanation

structure to represent classes of learning situations along with the types of learning needed in those

situations. This structure, called an Introspective Meta-XP, aids in the analysis of the reasoning

trace to analyze the system’s reasoning process, and is an essential component of a multistrategy

learning system that can automatically identify and correct its own shortcomings. Thus, instead of

simply representing a trace of the reasoning process, we also represent the knowledge required to

analyze these traces in order to determine what to learn and how to learn it. As outlined in table 1,

the system uses Introspective Meta-XPs to examine the declarative reasoning chain (recorded in

step 0) in order to both explain the reasoning process and to learn from it after a problem-solving

episode. These structures associate a failure type3 (detected in step 1) with learning goals and

the appropriate set of learning strategies for pursuing those goals. Thus, given a specific learning

goal, as opposed to the failure itself, the system can explicitly plan for achieving that goal in it

background knowledge (or even defer the goal pursuit until a later learning opportunity arises),

much like traditional planners pursue goals in the world.4

Table 1 should be placed near here.
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Therefore, an Introspective Meta-XP performs three functions: in step 2B it aids in blame

assignment (determining which knowledge structures are missing, incorrect or inappropriately

applied); in step 2C it aids in the formulation of appropriate learning goals to pursue; and in

step 2D it aids in the selection of appropriate learning algorithms to recover and learn from the

reasoning error. Such meta-explanations augment a system’s ability to introspectively reason

about its own knowledge, about gaps within this knowledge, and about the reasoning processes

which attempt to fill these gaps. In Meta-TS, the use of explicit Meta-XP structures allows direct

inspection of the need to learn that arises from a problem-solving failure, and of the bases for the

selection of an appropriate learning strategy to address that need.

The remainder of this article is organized as follows. The next two sections present the

technical details of the computational model, including the problem-solving system (section 2) and

the introspective multistrategy learning system (section 3) that constitute the major components

of the model. The article then discusses both a quantitative and a qualitative evaluation of the

model (section 4) and relates the model to research in both artificial intelligence and psychology

(section 5). The article concludes with pragmatic implications of the model in education (section 6)

and a summary (section 7).

2 Diagnostic problem-solving

Before presenting the problem-solving component of the Meta-TS system, this section will describe

the diagnostic problem-solving task addressed by Meta-TS, and the environment from which the

human data was collected that constituted Meta-TS’s problem set.

2.1 A real-world problem-solving task

NCR’s manufacturing plant located near Atlanta has state-of-the-art facilities in electronics assem-

bly manufacturing with a newly installed surface mount technology (SMT) line. Our project began

when the plant became operational in January 1990 (Cohen, 1990). At that time, the plant was

facing typical start-up problems experienced by most new facilities. There were a high number

of printed-circuit boards (PCBs) in the test and repair region waiting to undergo troubleshooting,
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resulting in high work-in-process inventories. Our analysis of the system revealed that developing

a model of the troubleshooting operator would provide a structure for designing and implementing

computer-based tools for this task. The effort would also facilitate formalization of the task, which

could then be used in the design of instructional systems (Clancey, 1986), thereby facilitating the

development of a flexible work force that is complementary to the policy of the company.

A schematic of the manufacturing plant is shown in figure 1. An unpopulated board enters the

SMT line where it is populated with components, soldered, cleaned, and sheared. The populated

board then enters the test and repair area. A typical PCB manufacturing line has two major test and

repair areas, the “in-circuit test” area and the “functional test” area. PCBs are shipped only after

they pass both the in-circuit test (ICT) area and the functional test area. Our research focuses on

the troubleshooting process when a PCB fails in the ICT area.

Figure 1 should be placed near here.

In the ICT area, the populated printed-circuit board is mounted on an automated ICT machine.

The ICT machine checks individual components as well as connections between components for

proper functioning through several test procedures. If the PCB passes the tests, an appropriate

message appears on the console of the ICT machine. If the PCB fails any of the tests, the ICT

machine produces a ticket listing the detected failure(s). For example, a component on the PCB

could fail to meet the desired specifications, known as the “nominal” values of the component’s

parameters. The ICT machine may also provide additional symptomatic information which can be

used by the human operator in the troubleshooting process. The operator then uses the information

in the ticket to troubleshoot the PCB. Troubleshooting is a complex task which can be broken into

two components: diagnosis and repair. Diagnosis is a problem-solving task in which the operator

arrives at a description of cause of the failure and identifies an appropriate set of repair actions to

fix the faulty PCB. Repair involves carrying out the repair actions (in this case, usually a set of

manual actions performed by the operator on the board).

We developed a computational model of an operator involved in the task of troubleshooting

a faulty PCB. The model was based on protocol analysis of over 300 problem-solving episodes

gathered in the ICT area of the NCR plant (Cohen, Mitchell, & Govindaraj, 1992), and implemented
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in a computer system that performed the troubleshooting task. Figure 2 shows part of an example

troubleshooting protocol from Cohen (1990, p. 206). Of the data collected, one set (30%) was

used in the development of the model and the remaining set (70%) was used to perform both

behavioral validation and process validation of the computational model. We found that although

the problem-solving model was a fair representation of a skilled troubleshooting operator, it had

some limitations. First, the system assumed that its knowledge was correct and complete during the

reasoning process. It is difficult to hand-code all the knowledge required for this task. Furthermore,

even if this could be done, the system would still be faced with the “brittleness” problem. Due to the

dynamics of the system state changes in the electronics manufacturing domain, the computational

model must be flexible and robust. For example, one of the pieces of knowledge in the system was

“Resistor r254 is often damaged.” This occured due to a process problem in the manufacturing

plant. If the process problem were fixed, the association would no longer be valid. The system

must have the capability of altering its world model to reflect changes in the real world. In

addition, the problem-solving model did not capture improvement in the problem-solving skills

of the troubleshooting operator. Thus, the model was incomplete as a cognitive model of human

troubleshooting.

Figure 2 should be placed near here.

These considerations motivated our research towards incorporation of a learning model in the

system. The complete problem-solving and learning system is fully implemented in the Meta-TS

program, which has been evaluated using the data gathered at the NCR plant. In this article, we

will focus primarily on the learning aspects of the system; however, to provide context, we first

describe the problem-solving module of Meta-TS.

2.2 The diagnostic problem-solving module

A schematic of the problem-solving system, the troubleshooting module of Meta-TS, is shown

in figure 3 (Narayanan et al., 1992). The module takes as input the ICT ticket information and

the PCB information. The output of the module is a diagnosis and a set of recommended repair
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actions. The problem-solving process uses various types of knowledge, troubleshooting actions,

and control methods, briefly discussed below.

Figure 3 should be placed near here.

The problem-solving module uses various types of knowledge as well as available real-world

troubleshooting actions to hypothesize the cause of a failure and to suggest repair actions for

that failure. Based on the data from the human operators in the NCR plant, we categorized

diagnostic knowledge into two broad types, associations and heuristics. Associations are simple

rules which directly map a particular symptom to a specific diagnosis. The operator may perform

an intermediate action to confirm the hypothesis, but usually does not perform a series of search

sequences. This type of knowledge is context-sensitive and is indexed by board type. Heuristics are

standard rules of thumb. These rules are not context-sensitive and are applicable across board types.

Heuristics are used by the operator for troubleshooting when there is no known association for a

given problem situation. This knowledge determines the series of standard operating procedures

performed in troubleshooting a faulty PCB. Some examples of associative and heuristic knowledge

in the system are shown in table 2.

Table 2 should be placed near here.

In addition to associative and heuristic knowledge, the problem-solving module can also use

troubleshooting actions, which are intermediate subtasks performed by the system to gather the

board information. These correspond to explicit operator actions used in gathering information and

confirming intermediate hypotheses. Finally, the control methods in the problem-solving module

are procedures that enable the system to look at the symptoms, utilize the appropriate type of

knowledge, invoke proper intermediate actions, and finally arrive at the diagnosis result. This

result, also called a “diagnostic,” is a description of the failure along with the repair action(s)

necessary to fix the faulty PCB. It is also possible that the ICT reading is incorrect (known in the

industry as a “bogus” reading), in which case the PCB is rerun through the ICT machine. Some

examples of troubleshooting actions, control methods, and repair actions are shown in table 3.
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Table 3 should be placed near here.

The problem-solving module was initially implemented as a separate system, and then later

incorporated into Meta-TS along with the introspective multistrategy learning module. The imple-

mentation used AT&T 2.1 C++ on a SUN workstation under the UNIX operating system. The ICT

ticket information and the PCB information were represented as C++ classes. Class representations

were also used for associative and heuristic knowledge, control methods, troubleshooting actions,

and repair actions in the system. An example of a problem-solving episode is shown in figure 4.

Figure 4 should be placed near here.

In order to validate the troubleshooting process of the problem-solving module, we added an

explanation facility to keep track of the system’s problem-solving process and produce a trace

of the problem solving at the end of each problem-solving episode. The problem-solving traces

were compared with the verbal protocol data gathered from the human operators at the assembly

plant. (These problem-solving traces also played a central role in the learning module; this will

be discussed in more detail in section 3.) Using the problem-solving traces, the problem-solving

module was validated on 75% of the problem-solving episodes in our data for a major category of

board failures. On 84% of these episodes, the model arrived at the same diagnostic result as an

operator did in the real world for the same input information; and on 68% of the episodes, similar

actions were performed in the solution process (Narayanan et al., 1992). This remainder of this

article focuses on the learning module; further details of the problem-solving module can be found

in Cohen (1990) and Narayanan et al. (1992).

3 Learning diagnostic knowledge

Although the results from the stand-alone model of troubleshooting showed that the problem-

solving module constituted a reasonably good model of a skilled troubleshooting operator, the

model also contained obvious shortcomings. Electronics manufacturing, like most other real-
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world domains, is a complex and highly dynamic process. A complete model of troubleshooting

in such a domain requires a large amount of knowledge; in addition, the operator’s knowledge

will be inherently incomplete and subject to change as the process being modeled changes. The

problem-solving module, in contrast, was based on the assumption that the available knowledge

was complete and correct; it did not have the flexibility necessary to deal with this task domain

over an extended period of time. Furthermore, the model failed to capture the improvement of

problem-solving skills through experience, an important aspect of human performance in any task

domain.

For these reasons, we developed a learning module that allowed the system to learn incrementally

from each problem-solving episode. This module was based on observations of troubleshooting

operators in the plant, protocol analysis of the problem-solving process, and critical examination

of the computational model of the troubleshooting operator as implemented in the problem-solving

module. The overall system, called Meta-TS, uses multiple learning strategies, both supervised and

unsupervised, and a strategy selection mechanism to invoke appropriate strategies in different situ-

ations. Supervised learning occurs in situations in which a novice troubleshooter receives explicit

input from a skilled troubleshooter (the supervisor). In unsupervised learning, a troubleshooter

adapts his or her domain knowledge based on problem-solving experience without expert input.

Since a particular problem-solving episode may involve several pieces of knowledge (potentially

of different types), the troubleshooter, whether human or machine, must be able to examine the

reasons for successes and failures during problem solving in order to determine what needs to be

learned. For example, if the system fails to arrive at an correct diagnosis, it needs to determine

which piece of knowledge was missing or incorrect. To effectively accomplish this, the system

must be able to examine its own problem-solving processes. Thus, the problem-solving traces

produced by the explanation facility discussed earlier are a crucial component of the computational

model of learning.

Meta-TS uses declarative representations of the knowledge and methods used for problem-

solving in order to facilitate critical self-examination. A trace of the problem-solving process is

constructed during the troubleshooting episode, and introspectively analyzed during the learning

phase to determine what the system might learn from that episode. The analysis also helps the

system select the learning strategy appropriate for that type of learning.
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3.1 What is to be learned?

Since the problem-solving module relies on associative and heuristic knowledge, the learning

module must, in general, be able to acquire, modify, or delete such associations and heuristics

through experience. In order to be more specific about the constraints on and output of the

learning task, it is necessary to examine the troubleshooting model in more detail. Recent research

in diagnostic problem solving has proposed the use of “deep” reasoning methods (Davis, 1985)

or integration of “deep” and “shallow” reasoning methods in knowledge-based systems (Fink

& Lusth, 1987) and in tutoring systems (Lesgold et al., 1988). Our observations revealed that

operators rely predominantly on “shallow” reasoning methods using heuristic and context-sensitive

associative knowledge during problem solving (Cohen, 1990; Cohen, Mitchell, & Govindaraj,

1992; Narayanan et al., 1992). This may be due to the fact that the ICT machine filters out most

of the topographic knowledge of the PCB and causal knowledge of the components in the board

through a series of tests. Maxion (1985) makes a similar observation about human problem-solving

in the domain of hardware systems diagnosis, noting that “diagnostic judgement is based on gross

chunks of conceptual knowledge as opposed to detailed knowledge of the domain architecture"

[pp. 268-269]. The observation by Barr and Feigenbaum (1981), that humans often solve a problem

by finding a way to think about the problem that facilitates the search for a solution, was clearly

evident in our study. In this task domain, the search is carried out through “shallow” reasoning

using associations and heuristics; furthermore, the search is sensitive to process changes and can

sometimes make use of a human expert. Thus, the learning strategies implemented in Meta-TS

focus on the supervised and unsupervised acquisition, modification, and deletion of associative

knowledge through the analysis of reasoning traces that, however, do not contain detailed domain

knowledge.

Associative knowledge improves the system performance in two ways. First, it improves

the speed of the problem-solving process. Using associative knowledge typically results in the

reduction of some intermediate steps in the reasoning process, thus resulting in some savings in the

time required to troubleshoot; this is particularly significant if the problem-solving steps involve

real-world actions (such as the lifted leg procedure) which take time to execute. This reduction is

important for assembly line tasks which are typically highly time-constrained. Second, associative

knowledge can provide solutions in cases where heuristic knowledge requires information about
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the board that is not easy to obtain. In general, associative knowledge contributes to the quality and

correctness of the solution for a large number of the problem-solving situations. This was evident

in our data from the electronics assembly plant, and has also been observed by other researchers

(e.g., Arabian, 1989). Thus, an important type of learning is one in which the operator learns

associations through experience.

Human operators involved in troubleshooting also appear to learn some heuristic knowledge.

We noticed that the training program for novice human operators primarily focuses on manual

skills such as soldering and performing actions such as “ohming out.” However, the problem-

solving process of skilled human operators in the plant revealed that they often use certain standard

operating procedures or heuristics. The source of this heuristic knowledge appears to be the result

of generalization of associations learned over time while troubleshooting. In addition, as is the

case for associations, heuristics can be learned through both supervised and unsupervised learning

methods. The current implementation of Meta-TS focuses on the learning of associative knowledge

through experience and does not include strategies for learning heuristics. More research is needed

to develop such strategies.

3.2 The introspective multistrategy-learning module

Our approach to multistrategy learning is based on the analysis of declarative traces of reasoning

processes to determine what and how to learn (Ram & Cox, 1994). A particular troubleshooting

episode may involve many different associations, heuristics, and troubleshooting actions. If the

final diagnosis is incorrect, the system analyzes its reasoning process, assigns blame for its failure,

and determines what it needs to learn in order to avoid repeating a similar mistake in the future.

If the diagnosis is correct, the system can determine what it might learn in order to improve the

process that led up to this diagnosis. Finally, depending on the type of learning that is necessary,

the system must invoke an appropriate learning strategy. Thus, learning is viewed as a deliberative,

planful process in which the system makes explicit decisions about what to learn and how to learn

it (Hunter, 1990b; Quilici, in press; Ram, 1991; Ram & Hunter, 1992; Ram & Leake, in press;

Redmond, 1992). In our introspective multistrategy learning framework, these decisions are based

through introspective analysis of the system’s performance, which relies on metaknowledge about
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the reasoning performed by the system during the performance task, about the system’s knowledge,

and about the organization of this knowledge (Ram & Cox, 1994; Ram, Cox, & Narayanan, in

press).

The submodules and the control flow in the introspective multistrategy learning module are

shown in figure 5 along with the sources of information used by the submodules. The problem-

solving module has a declarative representation of the associative knowledge used in troubleshoot-

ing. The learning module can add, delete, or modify associative knowledge in the problem-solving

module. It also has a set of verification actions and a set of declaratively represented learning

strategies.

During a troubleshooting episode, a trace of the reasoning performed by the system along with

causal links that explain the intermediate decisions taken is recorded in an instance of a Trace

Meta-XP by the system’s explanation facility. The explainer uses input from the problem-solving

module in the form of actions taken, knowledge used to make decisions, and the diagnosis outcome.

It also uses the ICT ticket reading and its representation of the PCB from the world model. From

this input it reconstructs the reasoning trace and passes it to the introspector.

Figure 5 should be placed near here.

After every problem-solving episode, the introspector examines the reasoning trace and uses

information gathered from tests on the world to determine if the system can learn something from

this experience. Learning occurs when the system fails to make the correct diagnosis (due to

missing or incorrect knowledge) or when the system ascertains that the problem-solving process

can be made more efficient. The tests also help to generate and verify hypotheses that explain

why the reasoning which produced the diagnosis failed, and play a role similar to the real-world

actions performed by experimentation systems (e.g., Carbonell & Gil, 1990; Rajamoney, 1989).

Specifically, in addition to accessing ICT information and PCB information which is provided as

input to the system, the system uses troubleshooting actions to gather additional information about

the PCB and verification actions to obtain statistical information and to gather information from an

expert troubleshooter.
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Finally, based on what needs to be learned, an appropriate learning strategy is triggered, which

results in the modification of existing knowledge in the problem-solving system. The learning mod-

ule contains a set of learning strategies represented along with information for strategy selection.

In Meta-TS, the introspector is implemented as a C++ class with methods for each learning strategy

(see figure 6); this class encodes the knowledge that corresponds to the Introspective Meta-XPs

discussed earlier. The learning strategies currently implemented in Meta-TS are discussed in the

next section.

Figure 6 should be placed near here.

3.3 Learning strategies

Meta-TS has several strategies for learning associative knowledge for the troubleshooting task, in-

cluding unsupervised knowledge compilation, supervised learning from an expert, postponement of

learning goals, and forgetting invalid associations. Each strategy requires us to make several design

decisions; these are discussed below. All the strategies discussed below are fully implemented.

3.3.1 Unsupervised learning

The first strategy is that of unsupervised, incremental inductive learning, which creates an associa-

tion when the problem-solving module arrives at a correct diagnosis using heuristic knowledge. The

introspector compiles the heuristic knowledge into an association using a learning method similar

to knowledge compilation (Anderson, 1989). The motivation for this type of learning is perfor-

mance gain through reduction of the number of intermediate steps when the system encounters a

similar problem in the future, although use of this strategy also reinforces correct problem-solving

sequences.

An example of the unsupervised learning of associations through experience is shown in figure 7.

In this example, the ICT ticket reading indicated that the resistor component r22 had failed with a

measured reading of 16 ohms. The nominal reading of this component, from the PCB specification,
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is 20 ohms. The problem-solving module reads the symptom (step 1 in the figure). It first tries

to find an association that directly maps the observed symptoms into a diagnosis, but fails to find

one (step 2). It then finds (step 3) and invokes (step 4) a heuristic that recommends performing the

troubleshooting action “ohming out” on r22. The action is performed in step 5, but it finds that r22

is not faulty. Finally, the system outputs the diagnosis that the ICT ticket reading was “bogus.”

These steps are stored in a Trace Meta-XP, which is analyzed after the troubleshooting is

complete. In this example, the introspector performs additional tests on the PCB to determine that

the diagnosis is correct. Since this is an experience in which a correct diagnosis was reached through

the use of heuristic knowledge in a situation for which no association existed, an Introspective Meta-

XP recommends that a new association be learned: “If the ICT ticket indicates that r22 has failed,

and the measured reading is slightly lower than the nominal value, then output the diagnosis that

the ICT ticket is “bogus.” This association is installed in the system and is used for future problem

solving; it may also be deleted later if it is incorrect or becomes obsolete (e.g., if the problem is

fixed).

Figure 7 should be placed near here.

Several design decisions were made in our implementation of this learning strategy:

� What is the right time to activate the strategy? Unsupervised learning takes place at the end

of a troubleshooting episode. This strategy is activated when Meta-TS arrives at the right

solution using heuristic knowledge alone.

� When is it useful to form an association? Meta-TS uses statistical information about the

episode (e.g., the number of steps involved in problem solving) and determines if there

will be performance gain through the reduction in the number of intermediate steps while

troubleshooting a similar board. This information is only used to determine whether learning

a new association would speed up the troubleshooting process, and does not ensure that the

learned association is “correct.”

� What is the right association to learn? Consider the situation when the ICT input is I, the

intermediate steps are 1, 2, 3, 4, and 5, and the diagnostic result is O. Meta-TS would form

17



an association either between I and O, or between I, the final step (step 5 in this example),

and O. Domain knowledge is used to decide between the two alternatives. Our data shows

that human operators typically form an association between the input and output without any

intermediate steps when the diagnostic result is “Bogus ICT ticket reading.” In contrast, when

the operator decides to replace a defective part, he or she is conservative and performs either

a visual inspection or some other intermediate action to confirm the hypothesis. Meta-TS

behaves in a similar manner.

Discussion: We observed that human operators used yellow tags (“PostIt notes”) to note down

a recurring problem, especially when they believe that this information will be useful in the

future. This happened when they performed several intermediate steps during troubleshooting, and

typically after they had arrived at the diagnostic result. This was the motivation for including this

learning strategy, and also the basis for the first two design decisions.

3.3.2 Supervised learning

The second learning strategy creates a new association through supervisory input. This strategy is

triggered when the system arrives at an incorrect solution using heuristic and/or associative knowl-

edge. The system attempts to acquire a correct associative knowledge from a skilled troubleshooter

(the “supervisor”). This mechanism is similar to the interactive transfer of expertise in TEIRESIAS

(Davis, 1979). However, the knowledge learned in our system is not in the form of production

rules, but in the form of frames and slots for association records.

An example of the supervised learning of associations through experience is shown in figure 8.

In this example, the ICT ticket reading indicates that the resistor component r24 has failed, the

measured reading of 21.2 ohms being much higher than the nominal value of 10 ohms. There are

no known associations for this problem, so the system applies a heuristic that recommends “ohming

out” on r24. In this example, “ohming out” confirms that the ticket reading was correct. Another

heuristic recommends a simple visual inspection of the PCB, which shows that r24 is missing from

this PCB. This is output as the diagnosis from the problem-solving module. The introspector in the

learning module finds that the diagnosis is not correct; in this case, there is a missing IC component,

u37, that is responsible for the problematic ICT ticket reading. The expert supervisor suggests that
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a new association be formed that, for this input, recommends performing a visual inspection on

u37. This association is learned and installed for future use.

Figure 8 should be placed near here.

Several design decisions were made in our implementation of this learning strategy:

� What is the right time to activate the learning strategy? This strategy is activated at the end

of the troubleshooting episode when the system arrives at an incorrect solution or is unable

to make any inference based on the information available to it.

� What is the structure of the supervisory input? The structure of the desired supervisory

input is determined by the manner in which the associative knowledge is stored in the

system. In contrast, the conversation between an expert and novice troubleshooter is not

so structured. Since the relevant information transmitted between them is domain- and

task-oriented, however, that structure is exploited in the dialogs used by Meta-TS. While

the current implementation of this learning strategy does not model the full richness of

a troubleshooter’s interactions with an expert, the more structured interaction allows an

objective evaluation of the model. The user interaction in the current implementation of the

system is very simple since that was not the focus of our research; however, it would be

relatively easy to include a more sophisticated dialog system if desired.

� How can the system reason about the validity of the expert input? This is an open question

for learning systems in general. However, for our purposes, the input from the expert

troubleshooter can be assumed to be correct. Meta-TS does not critically examine whether

the input given by the expert is correct; it directly takes the associative knowledge input by

the expert and adds it to its knowledge base.

Discussion: Novice operators ask expert troubleshooters such as engineers or highly trained

technicians when they have problems in their task. We use the expert-novice metaphor for the

supervisor-system interaction. The system learns the knowledge input by the supervisor (as do

novice troubleshooters). The interaction between Meta-TS and the expert is capable of gathering
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the relevant associative knowledge. However, the actual mode of communication does not reflect

expert-novice interaction in the real world. For example, Meta-TS currently does not model

apprenticeship relationships in troubleshooting (e.g., Redmond, 1992).

The improvement in system performance from this learning strategy depends on the quality

and validity of the expert input. The new knowledge is subject to change, depending on the future

episodes encountered by the system. If the new knowledge obtained from supervisory input is

found to be reliable in a number of future instances, the confidence in the gained knowledge is

increased. However, if the new knowledge is incorrect, it is deleted over time (see section 3.3.4).

Thus, the transfer of knowledge is immediate but the “sustainability” of the knowledge depends on

the use of the gained knowledge.

3.3.3 Postponement

A third learning strategy is that of postponement (Hammond et al., 1993; Ram, 1991). This strategy

is triggered when the system is unable to get immediate input from a skilled troubleshooter. The

system posts a learning goal (Ram, 1991; Ram & Hunter, 1992; Ram & Leake, in press), keeps

track of the reasoning trace for the particular problem-solving episode, and asks questions at a

later time to gather appropriate associative knowledge. Postponement takes place when there is no

supervisory input at the end of a troubleshooting episode. The learning goal and the trace of the

troubleshooting episode are stored in the introspector. Suspended learning goals can be satisfied

both through supervised or unsupervised methods at a later time.

At the beginning of a new troubleshooting episode, the introspector checks whether the reason-

ing trace associated with any suspended learning goal is based on an input problem that is similar

to the current problem. Similarity is determined based on the fault type indicated on the ICT ticket

and the difference between the nominal and measured readings. If one or more matching learning

goals are found and an expert is available, the introspector triggers a question-and-answer session

by presenting the information it has on the past episodes. Details of the episodes are presented only

if the supervisor desires to look at it. If expert input is obtained, new associative knowledge is added

to the system and the resolved learning goals are deleted along with the associated reasoning traces.

The system then continues to solve the current problem using the new associative knowledge.
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If no expert input is available, the introspector tries to solve the current problem. If it succeeds,

the learning goals that matched this problem are automatically satisfied without supervisory input.

As before, these goals and associated reasoning traces are deleted since the system is now capable

of solving those problems. The system is also capable of solving similar problems in the future

with the newly formed associative knowledge.

Again, several design decisions were made in our implementation of this learning strategy:

� What is the appropriate time for question-answer sessions? A question-answer session takes

place either at the end of a troubleshooting episode or at the beginning of a new episode.

Question-answer sessions are not needed for learning goals that become redundant when

new associative knowledge is learned without user input. There are, of course, several other

factors involved in deciding when to ask a question, including sociological factors such as

the personalities of and interpersonal interactions between the troubleshooter and the expert

technician; these are outside the focus of our model.

� How should the suspended question be presented? Meta-TS uses context-sensitive presenta-

tion of information. When the user is asked for input in a situation which matches a similar

situation that is associated with a learning goal suspended from a prior episode, the informa-

tion in the reasoning traces leading to that learning goal is presented to provide a context for

the dialog. Using the principle of progressive disclosure, the user can ask to examine more

details.

� When are learning goals active? Learning goals are always “active” in the sense that any

problem-solving episode or question-answer session could contain the information sought

by a prior learning goal; however, learning goals are not actively pursued by the system until

the desired information is available in the available input, at which time the algorithm that

carries out the learning is executed.

Discussion: Novice operators seek input from the expert supervisor when they are unable to find

the solution to a problem. Operators may ask for input when a similar new problem is encountered.

Undiagnosed PCBs may also be stored and retrieved later for re-analysis, which corresponds to

the deferment of a learning goal until a later opportunity to get the appropriate information is
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encountered. The design decision to present prior reasoning traces to the expert is intended to

facilitate user interaction; although operators can often recall what they did in earlier situations,

it is arguable whether they remember all the details of the entire troubleshooting process for the

earlier situations.

3.3.4 Forgetting

Two additional learning strategies delete associative knowledge when it is no longer valid. These

strategies are primarily targeted at the brittleness problem that is encountered when the manufac-

turing process is changed and existing associations are rendered obsolete. The first strategy uses

expert input to delete associations, and is invoked at the end of every problem-solving episode.

The system queries the supervisor to determine whether any associations used in the reasoning

trace of that episode should be deleted. If the supervisor has knowledge about, for example, a

process change and the system dynamics has resulted in an association becoming obsolete, that

information can be input to Meta-TS. This strategy works quite well in general, although it is, of

course, dependent on the availability and quality of user input.

The second deletion strategy is unsupervised and does not require user input. This strategy

is selected when Meta-TS arrives at an incorrect solution (as determined through additional tests

on the PCB or through expert input) and the reasoning trace shows that a single association

was used in arriving at the solution. Since heuristic knowledge in this task domain tends to

be relatively stable, an incorrect diagnosis involving several heuristics and a single association is

blamed on the association. The introspector tracks down this association and deletes it. The current

implementation of this strategy cannot deal with situations in which more than one association is

used; such situations require assigning blame to the particular association that was at fault.

Several design decisions were made in our implementation of this learning strategy:

� Under what conditions should an association be deleted? When the expert troubleshooter

indicates that an association needs to be deleted, Meta-TS follows the supervisory input. In

the unsupervised mechanism, the system behaves conservatively in the sense that a piece

of associative knowledge is deleted only if the diagnostic result is incorrect and only one

association was involved in the problem-solving process. In the current implementation, a
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user-definable parameter determines how many times an association needs to be responsible

for an incorrect diagnosis before it is deleted; while not a general solution to the problem of

determining when a piece of knowledge is no longer valid, this method is reasonable in our

task domain given the highly dynamic nature of the manufacturing process. Empirical studies

showed good performance with this parameter set to 1; hence, in the evaluations presented

in section 4, the system was configured to delete an association if it led to a single incorrect

diagnosis, but a different setting could be chosen if desired. Another learning strategy (not

currently implemented) would be to make the association more specific so as to exclude the

current situation.

� What is the right time to activate the strategies? Deletion of existing associative knowledge

in Meta-TS takes place at the end of a troubleshooting episode. At this point, the system has

available to it the trace of its reasoning process and also information about the correctness of

its diagnostic result. Both are required in order to identify and delete incorrect knowledge.

Discussion: When the manufacturing process changes, it impacts the quality of the boards produced,

the types of malfunctions that can occur, and consequently the operator troubleshooting. For

example, let us assume that r243 is a known defective part, say, due to a poor quality vendor. When

the vendor is changed, the part r243 may no longer be defective. Typically, this information is

communicated from the manufacturing process line or when the operator recognizes the change

in the situation due to a failure of the troubleshooting process. The first situation corresponds

to the supervisory input case, and the second to the unsupervised case. It is arguable whether

human operators can “forget” an association instantaneously; however, trained operators often stop

using an obsolete association even if they do not actually “forget” it. The cognitive plausibility of

various forgetting mechanisms is still an open research issue, although the methods implemented

in Meta-TS are effective in dealing with the particular task at hand.

4 Evaluation

Meta-TS has been evaluated both qualitatively and quantitatively. We were interested both in

comparing the results to the human data, as well as evaluating it as a machine learning system.
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We evaluated the system using 42 actual problem-solving episodes gathered at the plant over a

2-month period (Cohen, 1990). The problems dealt with various types of resistor failures and

are representative of the types of problems encountered over the 2-month period. To evaluate the

learning methods, we tested the following five conditions on the 42 test problems.

� H (hand-coded): The original non-learning system with hand-coded associations. This

condition represents a troubleshooting system that has been hand-designed by an expert

researcher, and is useful as a benchmark in determining the strengths and limitations of the

learning strategies.

� NL (no learning): The system with all associations removed and learning turned off. This

condition represents a base case against which to evaluate the efficacy of the learning strate-

gies; it uses only heuristic knowledge.

� L (learning): The system with all associations removed and learning turned on. This is the

basic Meta-TS system with no prior experience.

� L42: The system with all associations removed, then trained it on the 42 test problems with

learning turned on. The system was then evaluated by re-running it on the same 42 problems.

This condition was intended to validate the learning strategies in Meta-TS by ensuring that

they learned the knowledge required to solve the problems.

� L20: The system with all associations removed, then trained on 20 randomly generated

training problems with learning turned on. The problems can be classified as easy, medium,

and hard, based on degree of difficulty as measured using the number of intermediate steps

in the troubleshooting process. We generated 20 random problems with the probabilities

that the problem generated was easy, medium or hard set to 0.6, 0.2 and 0.2, respectively.

The randomly generated training set is representative of the problems a human operator

encounters over about a month at the job, both in terms of number and degree of difficulty.

The problems varied from 42 test problems in various ways. In order to test the statistical

significance of the results, several independent random training problems were generated.

“L20” in the following discussion and in figures 8 through 12 indicates the mean L20 value

at various data points.
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Each of these conditions were evaluated quantitatively for speed and accuracy on the 42 test

problems, and also qualitatively by examining the content of the learned knowledge and details of

the solution process. For supervised learning strategies, we provided “expert” input to the system

based on what was appropriate to the input problem and domain experience.

4.1 Quantitative evaluation

Two quantitative performance measures were used: the accuracy of the diagnostic result, and the

speed (measured by the number of intermediate problem-solving steps) of arriving at the diagnosis.

Figures 9 through 13 illustrate the system performance over the 42 problems for the H, NL, L, L42

and L20 conditions.

Diagnostic accuracy: Figure 9 shows the cumulative accuracy of the system for the various

conditions. The H condition arrived at the correct diagnosis in 86% of the 42 problems. The

L42 condition arrived at the correct diagnosis in 81% of the problems. The values for the L20, L,

and NL conditions were 76.8%, 76%, and 71% respectively. The graphs illustrate both these final

accuracy figures, as well as the improvement of the system with experience.

Figure 9 should be placed near here.

Figures 10 and 11 compare the accuracy of the learning conditions relative to that of the hand-

coded condition and non-learning conditions, relatively. By measuring the ratio, we compensate

for differences in the intrinsic difficulty of the individual problems. Again, the graphs illustrate

both the final result as well as improvement with experience. The ratio of the L42 condition to that

of the H condition is about 0.94; for L20 and L conditions, the ratios are 0.9 and 0.89, respectively.

As compared with the NL condition, the L42 condition is about 1.14 times more accurate; for L20

and L, the ratios are 1.08 and 1.07, respectively.

A t-test was performed to test the null hypothesis that the NL performance was equal to the

mean L20 performance. During this analysis, 5 independent random L20 sets were used; their

mean was tested against a constant, which is the value of NL. Using the operating characteristics
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curve, we determined that for the variance observed in the data, the sample size of 5 was sufficient

to keep the type II error (
�

) within 0.10. The t-test showed that the difference between NL and

L20 is statistically significant. At the end of 42 episodes, ��� 4 ��� 3 � 04, �
	 0 � 05 for the null

hypothesis L20 � NL. With only 35 episodes, the statistical advantage of L20 over NL was only

marginally significant after sequential Bonferoni adjustment ( ��� 4 ��� 3 � 33 �
��� 0 � 03). Thus, the

learning system showed improvement in performance as compared to the non-learning system, and

this improvement was statistically significant after 42 training episodes.

An independent t-test was performed to compare the mean L20 performance to the performance

in the H condition. The test showed that the performance of the learning system was poorer than

the performance of the system using hand-coded associations after 15 episodes at a type I error ( � )

value of 0.05. Thus, the learning in Meta-TS was better than the NL condition, but poorer than the

H condition.

Figure 10 should be placed near here.

Figure 11 should be placed near here.

Speed of problem solving: Figures 12 and 13 compare the speed of the solution process (mea-

sured by the number of intermediate steps) with the various learning conditions relative to the

hand-coded and non-learning condition, respectively. The L20 and L42 conditions consistently

arrive at the diagnostic result faster than the H condition. The L condition takes about 20 problem

episodes to reach the same speed as that of the H condition and then consistently arrives at the

diagnostic result faster than the H condition. At the end of the 42 problem episodes, the ratios of the

learning conditions to the hand-coded conditions are: 1.52 (L42 to H), 1.24 (L20 to H), and 1.06 (L

to H). In comparison to the non-learning version of the program, all the three learning conditions,

L42, L20, and L, consistently arrived at the diagnostic result faster than the NL condition. At the

end of the 42 problem episodes, the ratios of the learning conditions to the hand-coded conditions

are: 1.75 (L42 to H), 1.41 (L20 to H), and 1.20 (L to H).
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Figure 12 should be placed near here.

Figure 13 should be placed near here.

Discussion: The results of the quantitative evaluation can be summarized as follows. The

multistrategy learning module in Meta-TS clearly contributes to enhanced system performance in

the troubleshooting task; this improvement is statistically significant. In comparison with the non-

learning system with no hand-coded associations, the associative knowledge learned by Meta-TS

increases the accuracy of the diagnostic result and speeds up the problem-solving process. The

performance of Meta-TS further increases when it is trained on similar problems before it is applied

to novel problems. The associative knowledge learned by Meta-TS enables it to arrive at the same

solution as that of the system with the hand-coded associative knowledge between 89% and 94%

of the time.

Although Meta-TS is faster than the hand-coded version, it was also seen that Meta-TS with the

various learning strategies did not outperform the system with the hand-coded associations in terms

of the accuracy of diagnostic result. We hypothesize that it may be due to two reasons. First, in

order not to spoon-feed the system and possibly invalidate the results, the supervisory input given

to the system throughout the evaluation process was kept very minimal. Thus, the expert input

to the system for either the 20 or 42 problem-solving episodes may not have enabled Meta-TS to

obtain all the associations that an operator in the plant obtains over a period of several months of

task performance.5 Second, the currently implemented system does not contain all the learning

strategies that a human operator uses. However, given the learning architecture used in Meta-TS,

it is possible to incorporate additional learning strategies, once identified, in the system.

4.2 Qualitative evaluation

We also evaluated Meta-TS using various qualitative metrics. We compared the learned associations

with the hand-coded associations, the solution process of a human operator to that of Meta-TS on
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the same problems, and the methods and knowledge used by Meta-TS to troubleshoot and learn to

those used by human operators. The results are as follows.

Quality of the learned associative knowledge: We compared the associative knowledge learned

by Meta-TS while troubleshooting the 42 test boards to the hand-coded associations in the original

problem-solving system. Meta-TS learned 33% of the hand-coded associations. It was unable

to learn some of the hand-coded associations as it did not encounter them in the training or test

problem set. (Recall that the hand-coded associations were based on over 300 problem-solving

episodes.) Meta-TS also learned other associations that did not correspond to the hand-coded ones

which enabled it to perform better in terms of the speed of the solution process.

Comparison of the solution process: We compared the process of arriving at a solution in

Meta-TS and operator troubleshooting processes from the verbal protocols. The L20 condition

was used in this comparison as it best represents a fairly trained operator because of the training

input discussed earlier. We divided the problems into two sets. Difficult problems included those

in which Meta-TS was unable to arrive at the correct solution or those which required several

intermediate problem-solving steps; in about 50% of these problems, human operators also spent a

considerable time in troubleshooting. The remaining problems were considered easy for Meta-TS;

in about 80% of these, human operators also arrived at the correct solution fairly quickly.

Comparison of troubleshooting knowledge and learning processes: As discussed earlier, hu-

man operators rely predominantly on shallow reasoning methods using heuristic and context-

sensitive associative knowledge in this task domain. This is modeled through the use of heuristic

and associative knowledge in the troubleshooting model. Furthermore, humans operators learn as-

sociative knowledge through experience in the task by several means. They may obtain input from

expert troubleshooters. They may also notice recurring instances of a problem and may then form

an association between the input and the diagnostic result. In some situations, when immediate

input from an expert is not available, they may place the PCB with the ICT reading aside and then

attempt to obtain supervisory input at a later time when they encounter a similar problem. All these

means of learning associative knowledge by human operators are reflected by the various learning
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strategies in Meta-TS, as discussed earlier. The strategies are integrated through the introspective

learning architecture of the system.

4.3 Generality of the model

In addition to evaluating Meta-TS itself, we also need to evaluate the generality and flexibility of the

underlying model of introspective multistrategy learning. We are performing another case study in

a task domain that is very different from the one discussed in this article. The Meta-AQUA system,

presented in Ram and Cox (1994), uses “deep” causal knowledge to understand natural language

stories. The performance task in this system that of causal and motivational analysis of conceptual

input in order to infer coherence-creating structures that tie the input together. Meta-AQUA is an

introspective multistrategy learning system that improves its ability to understand stories consisting

of sequences of descriptions of states and actions performed by characters in the real world. The

system is based on the AQUA system (Ram, 1991, 1993), which is a computational model of an

active reader. Meta-AQUA uses the same theory of introspective multistrategy learning to allow the

system to recover from, and learn from, several types of reasoning failures through an introspective

analysis of its performance on the story understanding task.

In both AQUA and Meta-AQUA, reading is viewed as an active, goal-driven process in which

the reasoning system focuses attention on what it needs to know and attempts to learn by pursuing its

goals to acquire information (Ram, 1991). Such a system models the hypothetical metacognitive

reader discussed by Weinert (1987), who “perceives a gap in his knowledge, � � � attempt[s] to

take notes on the relevant information, to understand it,” undertakes “learning activities from

a written text,” examines “how his assessment of his own knowledge structures compares with

his expectations about the demands” of an uncoming performance task, and can tell us about his

“preferred learning strategies, and his evaluation of his own situation and the possible consequences”

[p. 7]. While reasoning in this task domain is very different from the often shallow diagnostic

processes used in assembly line manufacturing, and the two use very different kinds of knowledge,

it is possible to use the same model of introspective multistrategy learning in both task domains

(Ram, Cox, & Narayanan, in press). Although further details of Meta-AQUA are outside the scope

of this article, we introduce the system here as further computational evidence of the generality of
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our approach.

4.4 Limitations of the model

While we have achieved a reasonable degree of success in modeling human troubleshooters as

they learn and gain experience on an assembly line, our model also has several limitations. Some

of these limitations are due to the level of granularity of the introspective multistrategy learning

theory; this issue is discussed further towards the end of this section and in section 5.2. Here, we

discuss limitations in our use of the theory as a computational model of human troubleshooting,

including limitations arising from the computational framework used to develop Meta-TS, and

limitations due to the current implementation of the Meta-TS program.

Implementational limitations are, perhaps, the least important. For example, our current

implementation of the method for interactive transfer of expertise during supervised learning is

very simple. We were interested in the integration of multiple learning methods into a single

system and not so much in developing new learning algorithms; if better learning algorithms

were developed, they could be incorporated into Meta-TS with relative ease. Similarly, the

implementation of forgetting simply involves deletion of an association; clearly, human forgetting

is a much more complex process (e.g., Cox, 1994). Other such simplifications have been pointed

out in the preceding technical discussion. It is interesting to note, however, that Meta-TS can model

many aspects of the human data even with these simplifications.

Meta-TS is also limited in certain ways as a computational model of human troubleshooting.

Our model focuses on ICT troubleshooting operators who routinely work on testing and repair,

and does not model technicians or engineers who are, for example, called in to help with this

task on certain occasions, such as when a very difficult problem is encountered. Although expert

technicians and engineers may also rely on associative and heuristic knowledge similar to that

observed in our study, they may also use other kinds of knowledge, such as topographic models or

causal knowledge. For example, Hale (1992) shows that humans use both weak causal heuristics

and domain-specific knowledge in learning symptom-fault associations in causal domains. Senyk,

Patil, and Sonnenberg (1989) argue that in medical diagnosis experienced diagnosticians apply a

variety of reasoning techniques, ranging from the association of symptoms and diseases to causal
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principles about diseases and first-principle analysis grounded in basic science. Based on research

in process control, maintenance, and medicine, Rasmussen (1993) outlines the importance of causal

knowledge related to the mental model of human operators during problem solving. While the

Meta-TS framework permits extension of the model, the current model does not represent these

kinds of knowledge. Consequently, the model is limited to situations when the shallow reasoning

methods are sufficient and may not be directly useful for situations where “deeper” knowledge of

the domain is necessary (for example, situations when the root cause of the problem is to be found).

Another limitation of the current model is the simplified view of the troubleshooter’s interaction

with the environment. This interaction not only includes expert-novice interaction in supervised

learning situations, but also includes interaction with the equipment and artifacts in the environment

that the troubleshooter is situated in. In particular, our model focuses on cognitive processing and

not on situated interactions; while the former is important, the relationship between the two is an

important issue for future research.

Finally, while the learning strategies used in Meta-TS are similar to those used by a typical

“trained” operator, and the overall learning behavior of Meta-TS is also comparable with that

of a human operator, our analysis does not provide a detailed comparison with human thought

processes on individual problems. In particular, on a given set of problems, we have neither

shown that an individual human operator formulates the particular reasoning traces that Meta-

TS does, nor that he or she selects the particular learning strategies that Meta-TS does on each

problem in that set. Such a comparison is extremely difficult since the specifics of a reasoning

trace, and the corresponding choice of a learning strategy, depend on the domain knowledge and

level of expertise of the troubleshooter, the prior problems encountered, the availability of an

human expert, and other details. Furthermore, it is unclear how one could obtain protocols of

human troubleshooters that specified their reasoning traces or their strategy selection decisions in

sufficient detail to permit direct comparison on individual problem-solving episodes at the level of

granularity of the computational model.6 Thus, Meta-TS should be viewed as a model of a typical

troubleshooting operator in a typical assembly line environment, and not as a detailed model of a

specific individual operator solving a specific set of problems.
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5 Discussion and related research

Diagnostic problem-solving has been studied by several researchers in cognitive science, artificial

intelligence, psychology, and human-machine systems engineering. Specifically, there has been

much work on troubleshooting in real-world domains, including that of Bereiter and Miller (1989)

in computer-controlled automotive manufacturing, Govindaraj and Su (1988) in marine power

plants, Katz and Anderson (1987) in program debugging, Kuipers and Kassirer (1984) in medicine,

Maxion (1985) in fault-tolerant hardware systems, and Rasmussen (1984) in industrial process

control. Much of this work is based on studies of human problem-solving. Rouse and Hunt (1984)

discuss various models of operator troubleshooting based on experimental studies in simulated fault

diagnosis tasks and present implications for training and aiding operators in these tasks. Research

in artificial intelligence has resulted in computational models of knowledge-based diagnosis (e.g.,

Chandrasekaran, 1988) and qualitative reasoning (e.g., deKleer & Williams, 1987).

A detailed review of research in human troubleshooting and diagnostic problem-solving is

outside the focus of this article, which is concerned with issues in learning and introspection. In

the remainder of this section, we will summarize related issues from the artificial intelligence and

psychology literatures.

5.1 Artificial intelligence, metareasoning and multistrategy learning

There are several fundamental problems to be solved before we can build intelligent systems

capable of general multistrategy learning, including: determining the cause of a reasoning failure

(blame assignment), deciding what to learn (learning goal formulation), and selecting the best

learning strategies to pursue these learning goals (strategy selection). We claim that a general

multistrategy learning system that can determine its own learning goals and learn using multiple

learning strategies requires the ability to reflect or introspect about its own reasoning processes

and knowledge. Pollock (1989) distinguishes between knowledge about the facts that one knows

and knowledge about one’s motivations, beliefs and processes. Introspective multistrategy learning

is based on the both kinds of metaknowledge; we argue that introspective access to explicit

representations of knowledge and of reasoning processes is essential in making decisions about

what and how to learn.
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One form of introspection that has been implemented in many systems is the use of reasoning

traces to represent problem-solving performance; an early example of this approach was Suss-

man’s (1975) HACKER program. Reasoning trace information has primarily been used for blame

assignment (e.g., Birnbaum et al., 1990) and for speedup learning (e.g., Mitchell, Keller, & Kedar-

Cabelli, 1986). In addition, we propose that such information, suitably augmented with the kinds

of knowledge represented in our Introspective Meta-XP structures, can be used as the basis for the

selection of learning strategies in a multistrategy learning system.

Many research projects in AI have demonstrated the advantages of representing knowledge

about the world in a declarative manner. Similarly, our research shows that declarative knowledge

about reasoning can be beneficial. The approach is novel because it allows strategy selection

systems to reason about themselves and make decisions that would normally be hard-coded into

their programs by the designer, adding considerably to the power of such systems. Meta-reasoning

has been shown to be useful in planning and understanding systems (e.g., Stefik, 1981; Wilensky,

1984). Our research shows that meta-reasoning is useful in multistrategy learning as well. To

realize this ability, our model incorporates algorithms for learning and introspection, as well as

representational methods using which a system can represent and reason about its meta-models.

From the artificial intelligence point of view, our approach is similar to other approaches

based on “reasoning traces” (e.g., Carbonell, 1986; Minton, 1988) or “justification structures”

(e.g., Birnbaum et al., 1990; deKleer et al., 1977; Doyle, 1979), and to other approaches that use

characterizations of reasoning failures for blame assignment and/or multistrategy learning (e.g.,

Mooney & Ourston, 1991; Park & Wilkins, 1990; Stroulia & Goel, 1992). A major difference

between these approaches and ours is our use of explicit representational structures (Introspective

Meta-XPs) to represent classes of learning situations along with the types of learning needed in

those situations, a type of knowledge that is crucial in multistrategy learning systems. Other types

of knowledge may also be important in multistrategy learning systems. For example, Pazzani’s

(1991) OCCAM system has generalized knowledge about physical causality that is used to guide

multistrategy learning. In contrast, we propose specific knowledge about classes of learning

situations that can be used to guide learning strategy selection. Integration of these and other

approaches is still an open research issue.

Approaches to multistrategy learning fall into four broad categories, which we call strategy
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selection models, toolbox models, cascade models, and single mechanism models. The common

element in all these approaches is the use of multiple learning methods to allow the reasoning

system to learn in multiple types of learning situations.

In strategy selection models, the reasoning system has access to several learning strategies, each

represented as a separate algorithm or method. Learning involves an explicit decision stage in which

the appropriate learning strategy is identified, followed by a strategy application stage in which

the corresponding algorithm is executed. Methods for strategy selection also differ. Pazzani’s

(1991) OCCAM system, for example, tries each learning strategy in a pre-defined order until an

applicable one is found; Reich’s (1993) BRIDGER system uses a task analysis of the problem-

solving task to determine the appropriate learning strategies for each stage of the task; Hunter’s

(1990a) INVESTIGATOR system represents prerequisites for application of each learning strategy;

and Ram and Cox’s (1994) Meta-AQUA system uses characterizations of reasoning failures to

determine what to learn and, in turn, the learning strategies to use to learn it.

Toolbox models are similar to strategy selection models in that they too incorporate several

learning strategies in a single system. The difference is that these strategies are viewed as tools that

can be invoked by the user to perform different types of learning. The tools themselves are available

for use by other tools; thus, learning strategies may be organized as coroutines. An example of

this approach is Morik’s (1991) MOBAL system, in which learning occurs through the cooperation

of several learning tools with each other and with the user. Another example of the toolbox

class is the PRODIGY system (Carbonell, Knoblock, & Minton, 1991). The system combines

explanation-based learning, case-based (analogical) learning, abstraction, experimentation, static

analysis, and tutoring. However, the system is designed as a research test-bed for analyzing and

comparing various methods, rather than as a system that chooses a learning method itself. Instead,

the experimenter chooses a learning module to run against a given problem-solving test suite.7

In cascade models, two or more learning strategies are cascaded sequentially, with the output

of one strategy serving as the input to another. For example, Danyluk’s (1991) GEMINI system

uses a cascade of explanation-based learning, conceptual clustering, and rule induction strategies,

in that order, to combine analytical and empirical learning into a single learning system. Clearly,

these categories of models are not exclusive of each other (e.g., a strategy selection system may

choose to cascade learning strategies in certain circumstances), but they serve to characterize the
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major ways in which learning strategies may be integrated.

Finally, single mechanism models use a single underlying mechanism as a “weak method”

which can perform different types of learning depending on the situation. Examples of such

models are Laird, Rosenbloom and Newell’s (1986) SOAR, and Tecuci and Michalski’s (1991)

MTL. These approaches are sometimes contrasted with multistrategy approaches in that, although

they provide multiple methods for learning when characterized at a theoretical level, only a single

learning algorithm is implemented in the computer model. As discussed earlier, however, it is still

important to characterize the learning strategies that are implemented by (or that emerge from) the

single mechanism, and the circumstances under which different strategies are used by the system,

even in such systems as those above.

Our approach is an example of a strategy selection model. To develop a computer program that

can deal with the complexities of real-world troubleshooting, the system must deal with an incom-

plete world model, dynamic changes in the world which renders part of the world model obsolete,

and multiple forms of knowledge (much of it shallow). This requires the integration of multiple

learning methods (inductive, analytical, and interactive) in both supervised and unsupervised situ-

ations. Our experience with the Meta-TS system shows that a strategy selection architecture can

deal effectively with such problems. Furthermore, our approach provides a general framework for

integrating multiple learning methods. The learning strategies are not dependent on the domain,

but are, however, dependent on the types of knowledge used in the performance task.

5.2 Psychology, metacognition and human learning

Much of the metaknowledge research in artificial intelligence has focused on knowledge about

knowledge, or knowledge about the facts that one does or does not know (e.g., Barr, 1979; Davis,

1979; Davis & Buchanan, 1977). Much of the metacognition research in psychology has also

focused on similar issues, in particular, on cognitive processes, strategies, and knowledge having

the self as referent. Of particular interest is psychological research on metamemory which includes,

in addition to knowledge about knowledge, knowledge about memory in general and about the

peculiarities of one’s own memory abilities (Weinert, 1987). The empirical results obtained from

the Meta-TS system support the claim that metaknowledge should also include knowledge about
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reasoning and learning strategies.

Experimental results in the metacognition literature suggest that introspective reasoning can

facilitate reasoning and learning. For example, Delclos and Harrington (1991) report that subject

conditions with general problem-solving skill training and those with both problem-solving and

metacognitive skill training demonstrate equal performance on a logical problem-solving task. With

greater task complexity, however, subjects with the problem-solving and metacognitive training

exhibit greater performance than either a control group or the group with problem-solving training

alone. Swanson (1990) establishes the independence of general problem aptitude from metacogni-

tive ability. Subjects with relatively high metacognitive ability, but low aptitude, often compensate

for low aptitude by using metacognitive skills so that their performance is equivalent to subjects

with higher aptitude. Our research extends these results by specifying computational mechanisms

for metacognitive processing, focusing in particular on the selection and use of learning strategies.

There are at least three important ways that metacognitive knowledge and capabilities bear on

work in introspective learning. First, and foremost, is the emphasis on cognitive self-monitoring.

This behavior is a human’s ability to read their own mental states during cognitive processing

(Flavell & Wellman, 1977; Nelson & Narens, 1990; Wellman, 1983). Thus, there is a moment-

by-moment understanding of the content of one’s own mind, and an internal feedback for the

cognition being performed and a judgement of progress (or lack thereof). Psychological studies

have confirmed a positive effect between metamemory and memory performance in cognitive

monitoring situations (Schneider, 1985; Wellman, 1983). This directly supports the hypothesis that

there must be a review phase when reasoning or a parallel review process that introspects to some

degree about the performance element in a cognitive system.

Second, our Meta-XP theory places a heavy emphasis on explicit representation. Trains

of thought, as well as the products of thought, are represented as metaknowledge structures,

and computation is not simply calculated results from implicit side-effects of processing. This

emphasis echoes Chi’s (1987) argument that to understand knowledge organization and to examine

research issues there must be some representational framework. Although diverging from the

framework suggested by Chi, Meta-XP theory provides a robust form to represent knowledge

about knowledge and process. For example, Meta-XPs can represent the difference between

remembering and forgetting (Cox, 1994; Cox & Ram, 1992). Since forgetting is the absence of
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a successful retrieval (i.e., a mental event which did not occur), forgetting is difficult to represent

in most frameworks. An explicit representation of it, however, has been formulated in the Meta-

AQUA system mentioned earlier, and used to reorganize memory indexes when forgetting occurs.

Moreover, forgetting is an important issue in additional machine learning (Markovitch & Scott,

1988) and cognitive psychology (Mensink & Raaijmakers, 1988; Wellman & Johnson, 1979)

research. Meta-TS implements a simple form of forgetting in which obsolete knowledge is deleted

once it is identified.

Finally, because the approach taken by the introspective learning paradigm clearly addresses the

issue of memory organization, it can assign blame to errors that occur from mis-indexed knowledge

structures and poorly organized memory. Although Meta-TS does not need to deal directly with the

mis-indexed knowledge problem,8 extensions of this approach to other types of tasks and domains

may need to do so, particularly if deep knowledge is required. Memory organization of suspended

goals, background knowledge, and reasoning strategies is as important in determining the cause of a

reasoning failure as are the goals, propositions and strategies themselves (Ram, Cox, & Narayanan,

in press). Thus, memory retrieval and encoding issues are relevant in deciding what to learn and

which learning strategy is appropriate. This claim is supported by the metamemory community’s

focus on organizational features of memory and their relation to the human ability to know what

they know, even in the face of an unsuccessful memory retrieval. Extending the Meta-TS model

to include a cognitive model of human memory (including memory organization) is an important

issue for future research.

One of the major differences between the manner in which humans learn and that in which

machines do is that humans performdynamic metacognitive monitoring or self-evaluation. Humans

often know when they are making progress in problem solving, even if they are far from a solution,

and they know when they have sufficiently learned something with respect to some goal (Weinert,

1987). They know how to allocate mental resources and can judge when learning is over. Many of

the above reviews (e.g., Chi, 1987; Schneider, 1985; Wellman, 1983) cite evidence for such claims.

Research in Meta-XP theory is a step in the direction in adding this metacognitive monitoring

capability to AI systems, but this is beyond the capabilities of the present implementation of

Meta-TS.

It should be noted that the learning strategies represented in Meta-TS, or other strategy se-
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lection programs such as Meta-AQUA, are at a finer level of granularity than those examined by

much of psychology. For example, it would be misleading to assert that the types of learning

strategies studied by the metacognition community are similar to index learning, explanation-based

generalization, and other learning strategies used in Meta-AQUA, although Meta-TS’s strategies

are closer in content to the cognitively plausible learning methods suggested by Anderson (1989)

and others. Instead, metacognition research focuses on a person’s choice of strategic behaviors at

the level of cue elaboration, category grouping, and target rehearsal (in memory tasks); re-reading

of text, question generation, and keyword search (in text interpretation tasks); or solution check-

ing, saving intermediate results in an external representation, and comprehension monitoring (in

problem-solving tasks). However, many of the results from research on metacognition do support

the overall approach taken in this paper, that of using introspection to support the selection of

appropriate strategies in different situations. Although we are currently building computer systems

at what might be called the micro-level, it would be eventually be desirable to build systems that

integrate the kinds of behavior exhibited by human learners at the macro-level as well.

Finally, we would like to emphasize that our model of learning is agnostic about the issue of

“consciousness.” Weinert (1987) argues convincingly that consciousness is a persistent unsolved

problem in metacognition. However, we make no claims about when people are aware of their

introspection, nor that active, strategic learning necessarily implies a conscious process. We would

expect some of the processing in our model to be deliberative and conscious, especially when the

reasoning system becomes aware of a failure in its reasoning process, but it is evident that people

possess and use metacognitive knowledge that they are sometimes not aware of. This issue is

beyond the scope of and orthogonal to the point of this article; the computational model presented

here may be used to take an intentional stance (Dennett, 1987) towards the learning process in which

the competence of the learner is modeled using goals, learning decisions, learning actions, and so

forth as the basic theoretical constructs, independent of the degree of conscious self-awareness of

these processes in human thought.
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6 Pragmatic implications of the model for education

While Meta-TS is intended as a model of learning, our results have several pragmatic implications

for the design of interactive learning environments. Major issues in developing an intelligent

tutoring system include what to teach and how to teach; specific points of importance are the

student model, the teacher model, the organization of knowledge, the simulation of the task, and

the interface to the learner (Psotka, Massey, & Mutter, 1988; Spohrer & Kleiman, 1992). Our

research suggests that it would be valuable to teach shallow troubleshooting knowledge, including

context-specific associative knowledge and general heuristic knowledge. Furthermore, since our

model of learning involves reasoning about actual troubleshooting experiences, and active pursuit of

identified learning goals through multiple learning strategies, we suggest that novice troubleshooters

be placed in simulated or actual problem-solving situations and encouraged to reason about what

they are doing and why they are doing it. This approach is consistent with recent approaches

suggested in the educational literature. For example, in Scardamalia and Bereiter’s (1991) Teacher

C model, the teacher is concerned with helping students formulate their own goals, do their own

activation of prior knowledge, ask their own questions, direct their own inquiry, and do their

own monitoring of comprehension. Redmond (1992) suggests a similar approach to learning

through apprenticeship. His model is implemented in the CELIA system, which observes an

expert troubleshooter (in this case, a car mechanic) solving the given problem, reasons explicitly

about how it would solve the same problem, and determines what it needs to learn in order to

be able to explain and predict the expert’s behavior based on the differences between the expert’s

problem-solving processes and its own.

Several researchers have proposed simulation environments in which students play roles that

are connected to their goals, and whose successful completion requires acquisition of the skills to

be taught (e.g., Schank et al., 1994; Shute, Glaser, & Raghavan, 1988; van Berkum et al., 1991).

Van Berkum and his colleagues, for example, identify four aspects of the design of such systems:

simulation models, learning goals, learning processes, and learning activity. In their model,

students pursue learning goals with three dimensions: the type of knowledge, the representation

of that knowledge, and the generality and applicability of that knowledge. Learning occurs

through interaction with simulated environments using four types of learning actions (orientation,
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hypothesis generation, testing, and evaluation) which are guided by the learning goals. The learning

model implemented in Meta-TS provides a basis for the design of such learning environments. In

particular, we suggest that these environments provide facilities to encourage students to introspect,

question, and explore. Exploring the relationship between learning and education is a fruitful

direction for future research.

7 Conclusions

We have presented a computational framework for introspective multistrategy learning, which is a

deliberative or strategic learning process in which a reasoner introspects about its own performance

to decide what to learn and how to learn it. The reasoner introspects about its own performance

on a reasoning task, assigns credit or blame for its performance, identifies what it needs to learn to

improve its performance, formulates learning goals to acquire the required knowledge, and pursues

its learning goals using multiple learning strategies. In this article, we have presented a model of

human troubleshooting based on this framework, focusing in particular on the learning aspects of the

model. The model is implemented in a computer program which models human troubleshooters and

also provides a case study in the use of the computational framework for the design of multistrategy

machine learning systems. Our approach relies on a declarative representation of meta-models

for reasoning and learning. The resulting computational model represents a novel combination of

metacognition and multistrategy learning and provides a framework for cognitive modeling as well

as the design of artificial intelligence systems.

In this article, we have presented a particular case study of an introspective multistrategy

learning system for the complex task of diagnostic problem-solving on the assembly line of

a real-world manufacturing plant. The research was based on observations of troubleshooting

operators and protocol analysis of the data gathered in the test area of an operational electronics

manufacturing plant. The model was implemented in a computer system, Meta-TS, which uses

multiple types of knowledge to troubleshoot printed-circuit boards that fail in the test area. Meta-TS

was evaluated on a series of troubleshooting problems, including actual problems encountered by

the human operators in the manufacturing plant. The results were evaluated both qualitatively and

quantitatively to determine the efficacy of the learning methods as well as to compare the model
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to human data. The results show that the model can be computationally justified as a uniform,

extensible framework for multistrategy learning, and cognitively justified as a plausible model of

human learning.
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Figure 1: A schematic of the NCR electronics manufacturing plant.
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“R24 has a reading slightly lower than nominal. Therefore, the operator suspects that a bad IC

connected to it is loading it down. After checking the schematics, he sees that u65 is connected

to it. This is a known bad part. He lifts the leg connected to it and ohms out the resistor. The

resistor now measures 10K, so he knows that u65 is the culprit. He replaces the IC (and attributes

the problem to the vendor).”

Figure 2: Sample troubleshooting protocol from Cohen (1990, p. 206).
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Figure 3: The problem-solving module for the troubleshooting task.
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Troubleshooting board #6

ICT ticket information
-------------------------
These are board faults
TA 7052 MAX Processor
-------------------------
r243 has failed
Measured = 18.000000 ohms
Nominal = 10.000000 ohms
-------------------------

Entering problem solver

Getting symptom information from ticket
r243 has failed

Looking for associations for r243
No associations found

Association search unsuccessful
Diagnosing by heuristics

Looking for heuristics

Applying heuristic-3
Measured value is much higher than nominal value
Suspecting an open/defective part

Ohming out on r243
Ticket reading verified

Performing visual inspection
Defective part verified

Diagnosis: Defective part, r243 is defective
Repair action: Replace r243

Figure 4: An example of a problem-solving episode.
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Figure 5: Architecture of the multistrategy learning module.
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// Definition of class Introspector

class Introspector
�

private:

int tableStrategiesCondition[MAX_PARAMETERS];
// Solution (1 - correct, 0 - incorrect or no solution)
// Heuristics (1 - yes, 0 - no)
// Associations (1 - yes, 0 - no)
// Expertinput (1 - yes, 0 - no)

int qAGoal; // True if learning goal requires question-answer session

public:

Introspector(void); // Default constructor
TraceCollection traces; // Collection of traces for postponement
void fillTable(void); // Method to fill the tableStrategiesCondition
void executeAppropriateStrategy(void);

// Method to execute appropriate strategy based on table
void strategyUnH(void); // Strategy for completely unsupervised learning

// when heuristics used for problem solving
void strategySH(void); // Strategy for both supervised and unsupervised learning

// when heuristics used for problem solving
void strategySHP(void); // strategy for both supervised and unsupervised learning

// when heuristics used for problem solving
// and learning goal needs to be suspended

void strategyDelS(void); // Strategy to delete obsolete associative knowledge
// through supervisory input

void strategyDelUn(char* inputStr);
// Strategy to delete obsolete associative knowledge
// through unsupervised reasoning

void learningMethod(void); // The learning control method
void reinitializeTable(void);

// Reinitializes tableStrategiesCond
int solution(void); // Determines if solution is correct by performing tests on

// the world and comparing reasoning trace
int heuristics(void); // Determines if reasoning process involved heuristic knowledge

// by searching through reasoning trace
int associations(void); // Determines if reasoning trace involved associated knowledge

// by searching through reasoning trace
int expertInput(void); // Determines if expert input is available

// by interacting with user
void setQAGoal (int val) // Creates learning goal for question-answer session
int getQAGoal (void) // Returns learning goal for question-answer session
void preQA(char* inString); // Pre questio-answer steps
void qA(void); // Asks question and gets answer

void appendTrace (void); // Utility methods
void displayTrace (void);
void displayTrace (char* input);

void removeTrace (void);
void removeTrace (char* input);
Boolean inputTrackTrace(char* input);

�
;

Figure 6: Implementation of introspector as a class in C++.

57



Troubleshooting board #13

ICT ticket information
-------------------------
These are board faults
TA 7052 MAX Processor
-------------------------
r22 has failed
Measured = 16.000000 ohms
Nominal = 20.000000 ohms
-------------------------

Entering problem solver

Step #1
CONTROL METHOD: get symptom information from ticket
PRECONDITIONS: ticket available
MET BY: input
RESULT: r22 has failed

Step #2
CONTROL METHOD: find associations for r22
PRECONDITIONS: symptom available
MET BY: r22 has failed
RESULT: no associations for r22

Step #3
CONTROL METHOD: find heuristics
PRECONDITIONS: symptom available AND no associations
MET BY: r22 has failed AND no associations for r22
RESULT: heuristic-1 found

Step #4
HEURISTIC: apply heuristic-1
PRECONDITIONS: measured value is slightly lower than nominal value
MET BY: ticket information
RESULT: ohming-out recommended

Step #5
ACTION: ohming-out on r22
PRECONDITIONS: symptom available AND action recommended
MET BY: r22 has failed and ohming-out recommended
RESULT: bogus ict ticket

Diagnosis: bogus ict ticket

Entering learner

Analyzing Trace Meta-XP steps 1-5
SYMPTOM: r22 has failed
DIAGNOSIS: bogus ict ticket
OUTCOME: diagnosis correct

Using Introspective Meta-XP
GOAL: learn association for r22
STRATEGY: unsupervised learning of associations

Invoking learning strategy
Creating new association for r22

Meta-TS now has associations for
r243, u37, r254, r200, r121, u73, r22

Figure 7: An example of the strategy of unsupervised learning of associations in Meta-TS. Here,
Meta-TS has just learned the association that r22 failures often indicate a “bogus” ticket reading.
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Troubleshooting board #2

ICT ticket information
-------------------------
These are board faults
TA 7052 MAX Processor
-------------------------
r24 has failed
Measured = 21.200001 ohms
Nominal = 10.000000 ohms
-------------------------

Entering problem solver

Step #1
CONTROL METHOD: get symptom information from ticket
PRECONDITIONS: ticket available
MET BY: input
RESULT: r24 has failed

Step #2
CONTROL METHOD: find associations for r24
PRECONDITIONS: symptom available
MET BY: r24 has failed
RESULT: no associations for r24

Step #3
CONTROL METHOD: find heuristics
PRECONDITIONS: symptom available AND no associations
MET BY: r24 has failed AND no associations for r24
RESULT: heuristic-3 found

Step #4
HEURISTIC: apply heuristic-3
PRECONDITIONS: measured value is much higher than nominal value
MET BY: ticket information
RESULT: ohming-out and visual-inspection recommended

Step #5
ACTION: ohming-out on r24
PRECONDITIONS: symptom available AND action recommended
MET BY: r24 has failed and ohming-out recommended
RESULT: ticket reading verified

Step #6
ACTION: visual-inspection on r24
PRECONDITIONS: symptom available AND action recommended
MET BY: r24 has failed and visual-inspection recommended
RESULT: r24 is missing

Diagnosis: missing part, r24 is missing

Entering learner

Analyzing Trace Meta-XP steps 1-6
SYMPTOM: r24 has failed
DIAGNOSIS: missing part, r24 is missing
OUTCOME: diagnosis incorrect, u37 is defective

Using Introspective Meta-XP
GOAL: learn association for u37
STRATEGY: supervised learning of associations

Invoking learning strategy

Is expert input available for this episode? >> yes
Enter left-hand-side of association: >> u37
Select right-hand-side of association:
a. Bogus ICT ticket
b. Replace defective part
c. Perform visual inspection followed by diagnosis
d. Perform lifted leg procedure followed by diagnosis
>> c

Creating new association for u37

Meta-TS now has associations for
r243, u37

Figure 8: An example of the strategy of supervised learning of associations in Meta-TS. Italics
indicate user input during this episode.
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Tables

Table 1: Algorithm for introspective multistrategy learning in Meta-TS. Note that step 2E is not

necessarily performed immediately after 2D; in some cases, it may be performed at a later time (for

example, as in the case of the postponement strategy in which learning is deferred until a suitable

opportunity arises).

Step 0: Perform troubleshooting and record in Trace Meta-XP, including reasoning steps and

knowledge (associations or heuristics) used in each step.

Step 1: Analyze Trace Meta-XP to identify reasoning failures, including incorrect diagnosis,

inability to create a diagnosis, and correct diagnosis but through inefficient problem-solving.

Step 2: If analysis reveals a reasoning failure, then learn:

Step 2A: Characterize type of reasoning failure

Step 2B: Use Introspective Meta-XPs encoded in introspector to determine cause of failure

Step 2C: Use analysis of type and cause of failure to determine what to learn

Step 2D: Choose appropriate learning algorithm

Step 2E: Apply learning algorithm
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Table 2: Examples of associative and heuristic knowledge used in the problem-solving module.
r# indicates the number of a resistor component, and u# indicates the number of an IC (integrated
circuit) component.

Associative knowledge
� r254 is often damaged. Visually inspect the part. If it is damaged, replace the part.

� If r1 or r2 fails, the ticket reading is “bogus.”
�

Output the diagnosis “Bogus ICT ticket.”

� u56 and u65 are known bad parts. Use the “lifted leg” procedure
�

to identify the bad part(s) and
replace them.

� r228, r239 and r279 are connected to u51. If one of these has failed with a low reading, u51 should
be replaced.

Heuristic knowledge
� If the measured reading of a resistor is slightly higher than the nominal value on the ICT ticket,

perform the “visual inspection” procedure. If the defect is found, terminate the search, otherwise
output the diagnosis “Unable to make an inference” and perform appropriate repair action.

� If the measured reading of the resistor is slightly lower (qualitatively) than the nominal value, perform
the “ohming out” action.

�

If the diagnosis is “Bogus ICT ticket”, terminate the search, otherwise
perform the “check schematics”action

�

and make an ordered list of faulty ICs. If any of these can
be fixed by association-based search, terminate search, otherwise test each of these ICs to determine
the faulty component. If a defective component is not found, terminate the search and output the
diagnosis “Unable to make an inference.”

�
A “bogus” ICT ticket reading is typically caused when there is a poor connection between the board and the tester.

�

During the “lifted leg” procedure the operator uses a dental tool to tug at each leg on a component to find legs which
have not been soldered to the pad.

�
“Ohming out” refers to using a multimeter to check the resistance of a connection on the board. This procedure

involves touching the two probes on the multimeter to each end of the connection.
�

“Check schematics” refers to the procedure followed by an operator to find the list of parts connected to a particular
component (using the schematic page number for parts provided by the ICT ticket).
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Table 3: Examples of troubleshooting actions, control methods, and repair actions in the problem-
solving module.

Troubleshooting actions
� Perform visual inspection.

� Check for faulty IC that lowers resistance.

� Ohm out on a resistor.

� Check schematics.

Control methods
� Look at the symptom information on the ICT ticket first.

� Determine if there is an association for that symptom in memory; if so, invoke it and terminate the
search.

� Perform the “visual inspection” action. If the defect is found, suggest appropriate repair action and
terminate search. Use the appropriate heuristics and determine the repair action depending on the
qualitative difference between the measured and nominal reading in the ticket.

Repair actions
� Identify the part number of the defective part and replace it with an equivalent part.

� Output “Bogus ICT ticket reading” to indicate a suspected false ICT ticket reading.

� Identify the part number of the missing part and install an appropriate part.

� Output “Unable to make an inference” to indicate insufficient knowledge to arrive at an inference that
indicates a repair action.
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